Sunday, February 8, 2015

How Hyperbaric Facility Upgrading Benefits Both Patients And Staff

By Janine Hughes


In some situations it becomes important to breathe oxygen under pressure ranging from one and one-half to three times the amount considered normal. The process was used at first to prevent early deep-water divers from suffering from decompression sickness during rapid ascents, but today has become an important part of the treatment given to hospital patients with certain types of injuries. Hyperbaric facility upgrading improves the process for hospital staff and patients alike.

During compression, people remain inside a uniquely designed chamber. Untreated air contains around 21% oxygen, and while beneficial, breathing pure oxygen has limited results in most cases. The best outcomes are generated by creating a pure form of this gas that is additionally under greater atmospheric pressure. It can statistically increase the volume of oxygen present in the blood.

In many cases the results are better formation of blood vessels, improved healing of stubborn wounds, greater control of infection, less deterioration of damaged tissues, and a reduction in the amount of toxicity of certain substances. By increasing oxygen delivery to all tissues there is less chance of obstruction caused by gas bubbles, and healing is more rapid. The number of treatments necessary varies from one or two, to multiple sessions.

The diseases and injuries that can benefit not only include decompression sickness, but today encompass infections of wounds sustained by diabetics, people who are crushed in accidents, those enduring life-threatening cases of gangrene, and patients with radiation damage from cancer treatments. Those suffering burns may benefit from quicker healing of skin grafts, and victims of carbon monoxide poisoning recover faster.

Facilities exist today primarily in hospitals, and consist of chambers that hold only one individual to those designed to accommodate up to twelve or more. A monoplace chamber has room for a single patient, may be tube shaped, and usually constructed of plastic. Patients recline inside, and a session may last up to two hours or more. The most common side effect is ear-popping due to pressure changes.

The amount of pressure and the time it takes for treatment are dependent on a specific diagnosis, and patient history regarding oxygen response. Some individuals benefit most from a daily regimen, while others require far fewer. In general, this procedure is safe and reliable. Patients with upper respiratory infections or other counter-indications may experience treatment delays.

Inspections takes place on a regular basis in order to review current operations. Often performed by medical consultants, the equipment itself is analyzed during operation, and staff members are asked to present existing issues or problems. Logs of necessary maintenance and operation often define where those improvements are necessary, and whether equipment needs replacing.

Upgrading to state-of-the-art equipment benefits both patients and staff. Not only does an improved facility provide better care, but is important for hospital administrators controlling the financial bottom line. Consultants can provide solid statistics that reveal cost savings compared to the amount needed to invest in improvements. Installation of improved equipment is coordinated to prevent any interruption in patient scheduling.




About the Author:



No comments:

Post a Comment